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Performance of Markov Chain–Monte Carlo Approaches for Mapping
Genes in Oligogenic Models with an Unknown Number of Loci
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Markov chain–Monte Carlo (MCMC) techniques for multipoint mapping of quantitative trait loci have been
developed on nuclear-family and extended-pedigree data. These methods are based on repeated sampling—peeling
and gene dropping of genotype vectors and random sampling of each of the model parameters from their full
conditional distributions, given phenotypes, markers, and other model parameters. We further refine such approaches
by improving the efficiency of the marker haplotype-updating algorithm and by adopting a new proposal for adding
loci. Incorporating these refinements, we have performed an extensive simulation study on simulated nuclear-family
data, varying the number of trait loci, family size, displacement, and other segregation parameters. Our simulation
studies show that our MCMC algorithm identifies the locations of the true trait loci and estimates their segregation
parameters well—provided that the total number of sibship pairs in the pedigree data is reasonably large, heritability
of each individual trait locus is not too low, and the loci are not too close together. Our MCMC algorithm was
shown to be significantly more efficient than LOKI (Heath 1997) in our simulation study using nuclear-family data.

Introduction

Quantitative trait-locus (QTL) mapping methods have
been well established in experimental genetics (see, e.g.,
Lander and Botstein 1989; Kruglyak and Lander 1995).
Recently, there has been a surge of interest in Bayesian
approaches to mapping QTLs. Although the origins of
these methods are in the plant- and animal-breeding
fields (Jansen and Stam 1994; Jansen 1996) and are
based on experimental crosses between highly inbred
lines, similar approaches have recently been explored in
human genetics. In experimental genetics, the samples
in the offspring generation are treated as independent
observations using a relatively simple regression of the
phenotype on a putative genotype, whose probability
distribution is related to the observed marker data. Ste-
phens and Smith (1993), Satagopan et al. (1996), and
Uimari et al. (1996) describe Markov chain–Monte
Carlo (MCMC) implementations of a fully Bayesian
treatment of the problem of estimating both the location
and segregation parameters for multiple QTLs, where
the number of QTLs is fixed. However, the number of
QTLs is in fact unknown, and hence the dimensionality
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of the parameter space is also unknown, a problem that
has not been solvable in a Bayesian framework until the
introduction of the reversible-jump MCMC method by
Green (1995). Sillanpää and Arjas (1998, 1999) and
Stevens and Fisch (1998) applied this approach to the
case of an unknown number of QTLs in line crosses,
and George et al. (2000) applied similar methods to the
problem of ordering marker loci. Although these meth-
ods, and the related methods in human genetics, were
originally developed for mapping genes involved in
quantitative traits, they are easily extended to binary,
censored age at onset, or multivariate traits; nevertheless,
we retain the term “QTL” in this discussion because of
its historical context, without wishing to imply any such
restriction.

The application of these ideas to human genetics is
relatively new. Additional complications in human ge-
netics derive from the absence of simple experimental-
cross designs, leading to the need to consider all possible
haplotypes corresponding to the observed genotypes,
missing marker data on some individuals, more-com-
plex pedigree structures, and uncertainty about the form
of the disease model. At the 10th Genetic Analysis
Workshop (GAW), Heath et al. (1997) and Thomas et
al. (1997) independently introduced similar methods
based on reversible-jump MCMC, where the genotypes
at the trait loci were sampled using peeling, conditional
on the current assignments of locations and segregation
parameters. Given these sampled genotypes, the updat-
ing of these parameters and the number of trait loci
then followed methods similar to those used in breed-
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Figure 1 Directed acyclic graph for the QTL mapping model.
Squares indicate observed data (X, H, and Y) or fixed hyperparameters
l. Circles indicate unknown parameters ( ) or latent var-G , S , and T� �

iables ( ). Not shown are the hyperpriors f forx , q , b , d , and G q� � � � �

and q for .b�

Figure 2 Convergence plots for the distribution of L for simu-
lations with sibship size for (a) true , (b) trueI p 50 # J p 8 L p 0

and heritability , (c) true and , and2 2L p 1 h p 0.75 L p 2 h p 0.75
(d) true and . The lines represent the cumulative prob-2L p 3 h p 0.75
abilities for the indicated values of the fitted L from the start of the
iterations (iteration �1,000).

ing and other human genetics applications. Heath’s
method, which is applicable to extended pedigrees, has
been described fully in a subsequent paper (Heath 1997)
and implemented in a program called LOKI. Several
applications of the method to real pedigree data on
alcoholism (Daw et al. 1999b) and to simulated nuclear-
family data (Hinrichs et al. 1999; Uimari et al. 1999)
were presented at the 11th GAW. Daw et al. (1999a)
applied LOKI to pedigree data on the age at onset of
Alzheimer disease, whereas Yuan et al. (2000) applied
it to data on familial hypobetalipoproteinemia. To date,
however, there has been no systematic simulation study
of the performance of these methods. Here, we describe
some further refinements of our algorithm and inves-
tigate its performance on simulated nuclear-family data.
In particular, our approach differs from that of Heath
by a new algorithm for adding trait loci that leads to
better acceptance rates.

Methods

Notation

Let index the sibships and itsi p 1,...,I j p 1,...,Ji

members, and let denote their observed phenotypes.Yij

Let index the parents of sibship i, and letp p m,f Yip

denote their phenotypes. (As in the GAW applications,
the phenotype is assumed here to be continuous with
normally distributed errors, but the methods are easily
extended to other types of data, including multivariate

phenotypes.) We postulate that there are an unknown
number L of diallelic trait loci that influence this phe-
notype. Let denote the unobserved trait genotype atGij�

locus for subject ij, and let be the grandparental� Sij�p

source for the allele inherited from parent p. Let de-q�

note the unknown population frequency of allele A at
locus . Finally, let denote a vector of observed� Zij

covariates.
Now suppose we have marker loci onm p 1,...,Mc

chromosomes . Let de-c p 1,...,C H p (H ,H )ijcm ijcm1 ijcm2

note the marker phenotypes at locus cm, and let Tijcmp

be the grandparental source of the marker allele inher-
ited from parent p. Let denote the chromosome onC�

which trait locus is located and the position of locus� P�

on that chromosome relative to the markers (0 p left�
of marker 1; m p right of marker m). Let denoteXcm

the map location of marker cm on the continuum along
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Table 1

BFs for the Number of Trait Loci when True L Varies from 0 to 5

MODEL I#J
HERITABILITY

(h2)

BFS FOR FITTED L

0 1 2 3 4 5�

0 50#8 0 6.60 3.35 .67 .08 .00 .00
1a 50#8 .10 5.92 3.44 .74 .10 .01 .00
1b 50#8 .25 .12 3.10 1.79 .50 .09 .00
1c 50#8 .50 .01 2.11 1.89 .93 .29 .06
1d 50#8 .75 .00 2.43 1.66 .87 .36 .09
1e 80#5 .75 .79 3.17 1.66 .45 .09 .00
1f 200#2 .75 6.20 3.36 .73 .11 .01 .00
1g 14#8 .75 .01 2.49 1.75 .76 .31 .09
1h 40#5 .75 .00 .53 1.73 1.45 .90 .42
1i 400#2 .75 .00 1.68 1.87 1.03 .45 .17
2a 50#8 .75 .00 .03 .95 1.53 1.68 1.29
2b 50#8 .75 .00 .00 .71 1.96 1.61 1.02
2c 50#8 .75 .00 .01 1.65 1.91 .92 .36
2d 50#8 .75 .00 .01 .29 1.24 2.09 1.91
2e 50#8 .75 .00 .00 .14 .83 2.18 2.65
3a 50#8 .75 .00 .00 .06 .65 2.27 2.93
3b 50#8 .75 .00 .01 .03 1.36 2.21 1.75
3c 50#8 .75 .00 .01 .88 1.80 1.72 .85
4 50#8 .75 .00 .00 .39 1.41 2.42 1.38
5 50#8 .75 .00 .00 .15 1.19 2.29 1.88
I1 50#8 .75 .00 .23 1.64 1.75 .98 .33
I2 50#8 .75 .00 .05 1.03 1.77 1.51 .87

Figure 3 BFs, heritability ( ), and displacement (Beta p2H p h
b) estimates across 50 marker positions, when there is only a single
trait locus with heritability 0.75 and pedigree size . The true50 # 8
simulated trait locus, its displacement b, and heritability (#10) are
shown as a vertical line.

the chromosome, and let denote the correspondingx�

map location of trait locus . Thus, if and� C p c 0 !�

, then , where .P p m ! M X ! x ! X n p m � 1� c cm � cn

(This distinction between positions and locations allows
us to replace the difficult task of sampling from the
highly multimodal distribution of locations by two suc-
cessive steps—a multinomial distribution of positions,
followed by a unimodal continuous distribution of lo-
cations within a position.) Finally, let denote the totalX̃c

length (in map units) of chromosome c, be˜ ˜X p � Xc

the total length of the genome, and let P̃ p � M � Cc

be the total number of possible trait locus positions.

Models

The directed acyclic graph for the proposed model is
shown in figure 1. The number of trait loci is assumed
to have some prior distribution with hyperparameter l.
In our implementation, we have assumed a Poisson dis-
tribution, but the Bayes factors (BFs) for L are relatively
insensitive to the choice of prior distribution or its hy-
perparameter—see, for example, the work of Thomas
et al. (1997). Given L, there are two sets of parameters

and , describing, respectively, theV p (x,q) Q p (b,d)
distributions of the genotypes and the displacements, the
latter expressed in terms of genetic displacements andb�

dominances . Each component of these parameter vec-d�

tors is independently distributed, with certain priors,
which are described below. The trait genotypes atG�

each locus are independently determined by the location
relative to flanking markers, the allele frequency ,x q� �

and the observed marker information . Finally,H ,Hcm cn

the trait phenotype is determined by the genotypes ,G
parameters , and covariates , where G denotesV, and G Z
a vector of global parameters not related to the trait
genotypes, such as overall means m, variances , and2j

covariate coefficients .g

We assume the trait loci are, a priori, independently
uniformly distributed across the entire genome, x ∼�

. For computational ease, we require that there˜U(0,X)
be at most one trait locus between any pair of marker
loci (or to the left of the first and right of the last markers
on any chromosome), but this is not a fundamental re-
quirement. The allele frequencies are assumed to haveq�

exchangeable Beta distributions with hyperpriors
. We used the Haldane map function to relate(f ,f )1 2

map distances to recombination fractions, but any map
function could be used.

Within a nuclear family, we assume that the parental
genotypes are in Hardy-Weinberg and linkage equilib-
rium across all trait and marker loci, with no assortive
mating. Thus, letting denote the paren-p p pG p (G ,G )i� i�1 i�2

tal alleles at trait locus for parent p and grandparental�
source s with and letting denote the vectorPp,s p m,f, G
of all parental genotypes, then

P pPr (G Fq) p � � � � Pr (G Fq ) , (1)i�s l
� i p s

where the latter probabilities are simply or .q (1 � q )� �

Then, conditional on the parents’ genotypes and their
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Figure 4 BFs across 50 marker positions for different degrees
of heritability—0.1, 0.25, 0.5, and 0.75 (#10), when there is only a
single trait locus (fixed pedigree size, ).50 # 8

marker sources, the offsprings’ genotypes are indepen-
dent across trait loci, sibs, and parental sources, with
probabilities for sib j at locus from parent p being�
proportional to

Pr (S FT ,T ; x ,X ,X )ij�p ijcmp ijcnp � cm cn

r 1�r r 1�r1 1 2 2p v (1 � v ) v (1 � v ) , (2)1 1 2 2

where and indicatev p v(x � X ) v p v(X � x )1 � cm 2 cn �

the recombination fractions corresponding to the indi-
cated map distances, if there is a recombinationr p 11

with marker cm (i.e., ) and 0 otherwise, andS ( Tij�p ijcmp

is defined similarly for marker cn. For some meioses,r2

it may not be possible to uniquely determine the grand-
parental sources of marker alleles. Conditional on the
marker haplotypes, the transition probabilities are ob-
tained by summing over all possible sources,

Pr (S FH ,H ; x ,X ,X )ij�p ijcm ijcn � cm cn

p Pr (S FT ,T ; x ,X ,X )� ij�p ijcmp ijcnp � cm cn

# Pr (T ,T FH ,H ; X � X ) , (3)ijcm ijcn ijcm ijcn cm cn

where the sum is taken over the four possible parental
haplotypings at the two adjacent marker loci.

For illustration, we consider the phenotype to be a
vector of continuous multivariate normally distributed
traits , determined by a linear penetrance model of theY
form

L

′Y ∼ MVN(a � g Z � b f(G ),S) , (4)� � �
�p1

where

�D if G p 0�

f(G) p d � D if G p 1� �{ }
1 � D if G p 2�

and

2D p 2q (1 � q )d � q . (5)� � � � �

The term is chosen so that will have expectationD f(G)�

0 over the population distribution of genotypes. de-S

notes a matrix of residual variances and covariances and
a matrix of regression coefficients for covariates .g Z

We assume flat priors on , , and d and independenta g

negative exponential priors on with expectationb 1 0�

q. However, we emphasize that the phenotype could take
any form with the appropriate specification of the pen-
etrance model; see, for example, Daw et al. (1999a) for
an application of such methods to censored age-at-onset
phenotypes.

Thus, the joint probability of the phenotypes and the
model parameters, conditional on the observed marker
haplotypes and covariates, is

Pr (L,V,Q,G,G,YFl,f,q,H,Z)

p Pr (LFl) Pr (VFf,L) Pr (QFq,L)

# Pr (G) Pr (GFH; V,L) Pr (YFG,Z; Q,G)

p Pr (LFl) Pr (G) Pr (YFG,Z; Q,G)
L

#� Pr (q Ff) Pr (x FP ) Pr (P ) Pr (b Fq)� � � � �
lp1

# Pr (d ) Pr (G FH ,H ; q ,x ,X ,X ) . (6)� � cm cn � � cm cn

Reversible-Jump MCMC

The model is fitted using “reversible-jump Markov
chain Monte Carlo” methods (Green 1995), a variant
of the Metropolis algorithm for problems where the
number of parameters is itself one of the unknown quan-
tities. The process involves iterative application of the
following sequence of operations:

1. Parental marker haplotypes are first reassigned by
randomly selecting a grandparental source at each locus
in turn, conditional on the current haplotype assignment
of the previous locus, the offsprings’ marker phenotypes
at the pair of loci, and the known map distance between
them. We have developed a Metropolis-Hastings ap-
proach with this proposal to ensure that haplotypes are
generated from the correct sampling distribution, con-
ditional on all the loci. However, we found that the
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Figure 5 BFs and estimates of heritability (#10) across 50 marker positions when there are two trait loci with distance 25 markers apart.
a, Equal-heritability model ( ). b, Unequal-heritability model ( ).2 2h p 0.37,0.37 h p 0.64,0.11

Figure 6 BFs and estimates of heritability (#10) across 50 marker positions when there are two trait loci with heritability 0.5 and 0.25,
varying their spacing (fixed pedigree size, ). a, Distance between two loci p 5. b, Distance between two loci p 4. c, Distance between50 # 8
two loci p 2.

acceptance rates were close to 100% in most cases and
that the results were virtually identical with and without
the acceptance step; most of the simulations described
below were conducted without this additional complex-
ity. Results from more extensive investigations on this
haplotype update for sparse marker spacings will be
found in the Discussion section.

2. For each currently existing locus :� p 1,...,L

2.1. The (ordered) genotypes for each nuclear fam-
ily are reassigned by sampling from their full con-
ditional distributions, given the phenotypes and
flanking markers of the entire sibship, the genotypes
at the other trait loci, and the current values of the
model parameters (including the location of the lo-
cus). This step involves peeling the genotype infor-
mation onto the parents, after random gene drop-
ping (Ploughman and Boehnke 1989).
2.2. A change in position either to the right orP�

the left by one marker is proposed randomly with
equal probabilities, unless the current position is at
the beginning or at the end of a chromosome (when
the proposal is always away from the end). The
Metropolis-Hastings acceptance probability is then
a function of the ratio of the peeled likelihoods at

the new and old positions and the ratio of the
lengths of the two segments.
2.3. A new map location is sampled from thex�

interval , conditional on the current po-[X ,X ]cm cn

sition. A Metropolis-Hastings algorithm is used
based on a Beta proposal distribution.
2.4. The penetrance parameters are updated(b ,d )� �

by sampling from their full conditional distribu-
tions, given phenotypes and genotypes.

3. The global parameters are updated bya, g, and S
sampling from their respective full conditional dis-
tributions.

4. Finally, the number of trait loci L is updated by
randomly deciding whether to propose (a) adding a new
locus or (b) deleting an existing one with equal proba-
bility (unless ). If an addition is proposed, then aL p 0
position is selected at random from those not already
occupied (favoring locations for which the trait residuals
show some evidence of linkage), together with param-
eters x, q, b, and d drawn at random from their respective
priors, and genotypes are assigned as in step 2.1. If a
deletion is proposed, then an existing locus is selected
with equal probability. The Metropolis-Hastings ratio
of true to proposed probabilities of the entire state of
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Figure 7 BFs and estimates of heritability (#10) when there are three trait loci with total heritability 0.75 (fixed pedigree size, ).50 # 8
a, Moderate segregation parameters and same heritability. b, Rare allele frequencies ( ). c, Disproportionate heritability ( 2q p .02, .05, .2 h p

).0.57, 0.14, and 0.04

Figure 8 BFs and estimates of heritability (#10) across 60 marker positions when there are four and five trait loci, respectively (total
heritability 0.75). a, Four-locus model. b, Five-locus model.

the system under the new and old parameters is then
computed to decide whether to accept the proposed
change.

The process is initialized by a random selection of L
from its Poisson prior, followed by random assignment
of displacement parameters and genotypes in the same
way as for new loci (step 4). A more detailed description
of our updating schemes can be found in the appendix.
Many parts of our updating algorithms are similar to
those in Heath (1997), but there are several important
differences, especially in the methods of assigning
marker haplotypes and of adding, deleting, and moving
trait loci.

In the first step, we generate an independent assign-
ment of marker haplotypes at each iteration, conditional
only on the marker genotypes, whereas Heath updates
the marker haplotypes by sampling from their full con-
ditional distributions. Details of our approach to hap-
lotyping are provided in the appendix, together with an
argument for why our approach might be expected to
generate approximately the same marginal distribution,
but with less dependency between iterations.

Steps 2.2 and 4 of our algorithm also differ from
Heath’s. In step 4, we propose to add loci by scanning

the entire genome for evidence of linkage of the trait
residuals (adjusting for the loci in the current model)
using a two-marker variant of the Haseman-Elston al-
gorithm described in the appendix, whereas the reverse
move—deletion of an existing locus—is proposed with
equal probability among all current loci. In contrast with
Heath’s proposal of simple random sampling from all
currently unoccupied positions, our approach is more
likely to propose a locus which will be accepted in the
Metropolis step. Likewise, in step 2.2 we propose a sim-
ple move of an existing locus by one marker position to
the right or left (supplemented by another move of the
exact location within its current marker interval),
whereas Heath proposes to split an existing locus into
two—one at the same locus and one at an entirely new
locus. Again, details are provided in the appendix.

Simulation Study

We performed a simulation study to assess the efficacy
of our MCMC method for identifying—under various
combinations of sibship size, genetic parameters, and
heritability—the number of trait loci, their locations,
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Table 2

Simulated Nuclear-Family Data with a Single Trait Locus at Various Combinations of Pedigree Size, QTL Location (Left Marker),
and Segregation Parameters

Model I#J Location (Fitted) (BF) q (Fitted � SD) b (Fitted � SD) d (Fitted � SD) (Fitted)2h

1a 50#8 10 (10) (.36) .5 (.33 � .23) .94 (.54 � .36) .5 (.48 � .28) .10 (.03)
1b 50#8 10 (10) (1.99) .5 (.39 � .16) 1.63 (1.08 � .37) .5 (.52 � .23) .25 (.12)
1c 50#8 10 (10) (6.55) .5 (.40 � .11) 2.83 (2.12 � .49) .5 (.56 � .14) .50 (.36)
1d 50#8 10 (10) (7.75) .5 (.41 � .09) 4.90 (4.05 � .84) .5 (.50 � .11) .75 (.66)
1d.r1–r10 50#8 10 (10) (7.32–7.75) .5 (.40–.42) 4.90 (4.02–4.14) .5 (.49–.50) .75 (.66–.68)
1e 80#5 10 (10) (8.54) .5 (.39 � .10) 4.90 (4.26 � .92) .5 (.51 � .10) .75 (.69)
1f 200#2 10 (11) (5.91) .5 (.41 � .12) 4.90 (3.97 � 1.13) .5 (.55 � .15) .75 (.66)
1g 14#8 10 (9) (7.75) .5 (.44 � .12) 4.90 (4.05 � .94) .5 (.50 � .12) .75 (.67)
1h 40#5 10 (10) (7.10) .5 (.37 � .12) 4.90 (4.06 � 1.09) .5 (.49 � .12) .75 (.66)
1i 400#2 10 (11) (10.56) .5 (.44 � .10) 4.90 (4.45 � .98) .5 (.50 � .11) .75 (.71)

NOTE.—In the parentheses the identified location with the highest BF, its BF, MCMC-fitted estimates of the segregation parameters,
and their corresponding sample SDs are shown. In 1d.r1-r10, we showed the minimum and maximum estimated values (in the parentheses)
of BF and segregation parameters from 10 independent runs on 1d data set with different starting points.

and segregation parameters. For this study, we simulated
nuclear-family data, fixing the total number of offspring
at 400 in most cases—50 families with sibship size 8,
80 families with sibship size 5, or 200 families with
sibship size 2. We used a fixed map of 50 markers, ran-
domly spaced an average of 2 cM apart on a single
chromosome, with 4–8 alleles and randomly chosen al-
lele frequencies at these markers. We then set L to

and chose their locations at random (subject0,1,...,5 x�

to the constraint that at most one trait locus was located
between any two markers). For single-QTL models, we
first set the trait allele frequency 0.5 and dominanceq p�

0.5 and then chose to produce heritabilities 2d p b h� � �

of 10%, 25%, 50%, and 75%, respectively, where her-
itability is defined as

2 2b � f (G)Q (q )� G �
G2h p� 2 2 2j ��b � f (G)Q (q )� G �

� G

and denotes the Hardy-Weinberg probabilities forQ (q)G

genotype G corresponding to allele frequency q. For
models with two or more QTLs, we generated similar
nuclear-family data with various combinations of pa-
rameter values , , and , chosen to attain specifiedq d b� � �

values adding up to 75%. Marker alleles were as-2h�

signed at each locus to each set of parents, assuming
Hardy-Weinberg and linkage equilibrium and random
mating. Parental marker sources were assigned to their
offspring locus-by-locus, conditional on the previous
marker locus. Trait alleles were then assigned indepen-
dently to parents and transmitted to their offspring,
given the markers at the flanking loci. Finally, normally
distributed phenotypes were assigned to parents and
their offspring, conditional on their trait genotypes.

Each data set was analyzed by our MCMC approach
described above, retaining 10,000 samples after dis-

carding the first 1,000 iterations to allow for conver-
gence. Figure 2 displays convergence diagnostics for
four runs with and 3, respectively, pro-L p 0, 1, 2,
viding the cumulative occupancy fractions for the fitted
posterior distribution of L. It is evident that these per-
centages have stabilized before the first 1,000 iterations
(�1,000–0 in fig. 2). In general, convergence was faster
than illustrated here for models with weaker heritabil-
ities, as exemplified in the panel with simulated L p
. Each run required 64–87 min on a multiprocessor0

SUN Ultra-4 Sparc Unix system. We now describe our
results in each model with a different number of true
trait loci in turn.

Null Model

We first tested whether any spurious trait loci were
detected when there is no true locus. In the plots which
follow for other models, we show the BFs for location
(defined as the posterior frequency with which a trait
locus at each position P appeared in the model divided
by its prior probability ) and the mean˜l(X � X )/Xcm c,m�1

heritability parameter over all assignments to that2h
position. For the null model, the BFs for location never
exceeded 0.5 and the displacement estimates were uni-
formly !1.0 over all positions (data not shown). The
other parameter estimates were also uniformly esti-
mated, with similar values and high sample SDs. Table
1 provides a summary of the BFs for L for this model
and those that follow. When the true , the highestL p 0
BFs were for , although also had .L p 0 L p 1 BF 1 1

Single-Locus Models

In models with , we were primarily interested inL p 1
assessing the detectability of loci with various degrees of
heritability and different sample-size distributions. Ini-
tially, we fixed the latter at 50 sibships of size 8 and varied
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Table 3

Simulated Nuclear-Family Data with Two Trait Loci: Five Models of Different Combinations of QTL Location
(Left-Marker) and Segregation Parameters

Model Location (Fitted) (BF) q (Fitted � SD) b (Fitted � SD) d (Fitted � SD) (Fitted)2h

2a 16 (17) (11.41) .5 (.40 � .09) 3.50 (3.02 � .52) .5 (.45 � .11) .37 (.35)
39 (40) (7.14) .5 (.41 � .09) 2.82 (2.24 � .44) 1.0 (.90 � .13) .37 (.32)

2b 16 (17) (14.59) .5 (.40 � .07) 3.70 (3.16 � .47) 1.0 (.93 � .08) .64 (.63)
39 (32) (2.74) .5 (.33 � .16) 1.85 (1.46 � .55) .5 (.36 � .24) .11 (.06)

2c 21 (21) (13.37) .3 (.27 � .06) 2.83 (2.85 � .40) 1.0 (.92 � .09) .50 (.49)
26 (27) (9.34) .5 (.43 � .11) 2.83 (2.46 � .61) .5 (.60 � .15) .25 (.22)

2d 31 (31) (4.65) .3 (.32 � .15) 2.83 (2.26 � .95) 1.0 (.74 � .23) .50 (.21)
35 (32) (22.60) .5 (.26 � .08) 2.83 (3.16 � .53) .5 (.89 � .11) .25 (.53)

2e 10 (10) (9.53) .3 (.31 � .13) 2.83 (2.32 � .67) 1.0 (.68 � .26) .50 (.28)
12 (12) (7.16) .5 (.31 � .12) 2.83 (2.46 � .74) .5 (.73 � .24) .25 (.35)

NOTE.—Total heritability is fixed at 0.75, and pedigree size is fixed at . In the parentheses, the identified50 # 8
locations with the highest BFs, their BFs, MCMC-fitted estimates of the segregation parameters, and their cor-
responding sample SDs are shown.

the heritability between 0.1 and 0.75. (For all these com-
parisons, we fixed ; we explore the effects ofq p d p 0.5
these parameters in later models.) Figure 3 illustrates how
we will summarize the results for the comparisons to fol-
low. Plotted as a function of location x are , theBF(x)
estimated value of b, and the heritability defined2h (x)
above, together with the simulated location and value of

. The main plot of is based on the ratio of the2h BF(x)
posterior density for each marker interval, divided by its
prior (which is proportional to the length of that interval).

Note that all three plots demonstrate a clear peak in
this simulation at the location of the simulated locus, but
the trace for shows the narrowest peak and theBF(x)
highest change in relative magnitude between baseline and
peak. In particular, the drops to !1 within twoBF(x)
marker loci of the simulated location (approximately �

cM). In what follows, therefore, we will focus on the5
plots of . Note that our plots show only the BFs forBF(x)
each marker position, not the exact location within each
interval—although the latter could easily be obtained by
smoothing the densities for the actual assignments.x�

Figure 4 compares the traces for heritabilitiesBF(x)
of 10%, 25%, 50%, and 75% (models 1a–d in tables
1 and 2). Not surprisingly, the stronger the heritability,
the higher and narrower the peak becomes. For 2h p

there is no trace of a peak, but for all larger values10%
the peak is centered at the simulated locus. The BFs for
L (table 1) similarly show somewhat greater support for

than in the case of . For larger2L p 0 L p 1 h p 10%
heritabilities, however, the highest is always forBF(L)

, and drops precipitously; nevertheless,L p 1 BF(L p 0)
there also appears to be some weak support for L p
. Table 2 provides the simulated and fitted segregation2

parameters for the subset of MCMC samples corre-
sponding to the highest BF in the neighborhood of the
simulated locus. The estimates of b—and, hence, also
the estimates of —appear to be biased slightly down-2h

ward, probably because of the inclusion of additional
spurious loci which absorb some of the effect of the
linked locus in some of the MCMC samples. To check
the convergence of our MCMC algorithm from different
starting points, it was run 10 times independently with
different starting points for a simulated data set
(1d.r1–r10), from which the true QTL location was al-
ways correctly identified and the mean estimates were
remarkably closely estimated (second block in table 2).

We also compared the effects of varying sibship sizes
and numbers of families in two ways: first, holding the
total sample size (IJ) fixed at 400 (models 1e–f in tables
1 and 2); second, holding the number of sib pairs,

, fixed at ∼400 (models 1g–i in tables 1 andIJ(J � 1)/2
2), fixing at 75%. In all cases, the plots of2h BF(x)
showed clear peaks at the simulated locus. (Additional
comparisons were carried out at 10%, 25%, and 50%
heritabilities, which showed essentially the same results
[data not shown].) The magnitude of the BFs and the
estimates and SDs of the fitted bs varied between the
sample sizes in a somewhat unpredictable manner, how-
ever (table 2). Holding the total sample size fixed, the
estimates of b clearly became more precise as the sibship
size increased, but the trend in maximum BFs was not
so clear; for the case, in addition to the peak200 # 2
close to the true simulated locus ( ), two falseBF p 5.91
peaks in appeared well away from the simulatedBF(x)
locus, but neither exceeded 1.0 (data not shown). Hold-
ing the total number of sib pairs fixed, the SDs of b were
similar, but the highest, , was attained forBF p 10.56

. There were no clear differences in theI p 200, J p 2
heritabilities.

Two-Locus Models

In two-locus models, we explored the resolution of
the method as a function of the heritabilities and the
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Table 4

Simulated Nuclear-Family Data for Three- and Four-Locus Models with Heritability and0.75
I # J p 50 # 8

Model and
Location
(Fitted) (BF) q (Fitted � SD) b (Fitted � SD) d (Fitted � SD) (Fitted)2h

3a:
4 (6) (5.78) .3 (.34 � .12) 2.2 (2.29 � .60) .9 (.77 � .17) .25 (.27)
25 (23) (4.41) .45 (.42 � .13) 2.2 (2.10 � .65) 1.0 (.72 � .22) .25 (.21)
45 (46) (5.65) .55 (.49 � .13) 2.2 (2.17 � .50) .0 (.20 � .18) .25 (.21)

3b:
10 (11) (5.25) .02 (.16 � .16) 8.9 (4.07 � 1.71) .5 (.51 � .34) .25 (.27)
35 (37) (2.78) .05 (.22 � .16) 5.7 (3.45 � 1.52) .5 (.51 � .19) .25 (.24)
45 (44) (6.25) .2 (.21 � .13) 4.1 (3.54 � 1.12) .5 (.52 � .16) .25 (.25)

3c:
4 (5) (10.99) .7 (.63 � .09) 3.02 (2.74 � .43) .0 (.07 � .11) .57 (.50)
25 (24) (2.61) .7 (.40 � .17) 1.51 (1.62 � .65) .0 (.45 � .23) .14 (.09)
45 (46) (1.67) .7 (.38 � .18) .76 (1.57 � .73) .0 (.52 � .24) .04 (.09)

4:
2 (2) (4.01) .2 (.33 � .15) 4.4 (2.76 � 1.39) .0 (.16 � .18) .19 (.20)
17 (17) (2.33) .2 (.32 � .18) 3.0 (1.77 � .80) .5 (.52 � .24) .19 (.12)
25 (27) (3.87) .2 (.31 � .15) 1.8 (1.96 � .91) 1.0 (.61 � .21) .18 (.14)
54 (54) (5.58) .2 (.29 � .10) 4.4 (3.59 � .84) .0 (.10 � .10) .19 (.24)

NOTE.—In the parentheses, the locations with the highest BFs, MCMC-fitted estimates, and
their corresponding sample SDs are shown.

distance between the two loci, from here on fixing the
pedigree size at . We first show for two50 # 8 BF(x)
widely separated loci, in one case with the same heri-
tability ( ; model 2a in tables 1 and 32 2h p h p 37%1 2

and fig. 5a) in and the other with very different heri-
tabilities ( ; model 2b in tables 12 2h p 64%,h p 11%1 2

and 3 and fig. 5b). In the equal-heritability case, both
QTLs were well localized and their parameter estimates
(table 3) were close to the true values. Not surprisingly,
in the unequal-heritability case, the weaker locus showed
a more broadly dispersed peak, in terms of BFs, and a

that was only modestly elevated above that at otherb̂

locations but was still detectable, despite the coexistence
of a much stronger locus.

The number of loci was not well estimated. Table 1
shows that in equal-heritability case, for example, the
peak was attained for , whereas the BF forBF(L) L p 4

was only 0.95; however, and couldL p 2 L p 0 L p 1
both be convincingly rejected by their BFs. Results for
other models were similar.L p 2

To investigate the effect of spacing, we considered two
loci with more-comparable effects, one dominant and one
additive, with heritabilities of 50% and 25%, respectively.
In these cases, we varied the distance between the two
trait loci from two to five marker positions (models 2c–e
in tables 1 and 3). When the two loci were five marker
positions apart, both were well localized (fig. 6a), and all
the parameters were well estimated (table 3). When we
tried to identify two trait loci placed at a gradually smaller
distances (four and two markers apart in figs. 6b and 6c,
respectively), we could find only a single mode of the BFs
for location in between the two loci, lumping their effects

as if they were from a single-trait locus, so that their
estimated total heritability was close to the simulated
value. Thus, it appears that two trait loci having similar
effects can only be distinguished if they are �10 cM apart
in data sets of comparable size and heritability.

Models with Three or More Loci

Figures 7 and 8 illustrate the results for a variety of
models having from three to five loci, all reasonably well
separated, for a range of segregation parameters adding
up to a total heritability of 75%. The corresponding pa-
rameter values and their estimates are given in table 4.
For the three three-locus cases, we varied the dominance
parameter in model 3a, simulated rare alleles with large
displacements in model 3b, and varied the heritabilities
for three recessive loci in model 3c (tables 1 and 4). In
all models, the three loci were identified at or close to
their simulated locations, with the possible exception of
the minor locus with only 4% heritability in the third
model, for which the fitted BF was only 1.67. The seg-
regation parameters were also well estimated in the first
and third models; however, in the rare-allele model, the
allele frequencies were generally overestimated and the
displacements underestimated, but they produced about
the right heritability estimates. The four-locus model also
produced good estimates of both locations and segrega-
tion parameters (tables 1 and 4 and fig. 8a). However, in
the five-locus model (tables 1 for BFs), although five peaks
attained a 12 (fig. 8b), the locations and the pa-BF(x)
rameter values were not estimated well, so we do not
report their actual data here. There could be several rea-



Lee and Thomas: MCMC Approaches for Mapping Genes in Oligogenic Mode 1241

Table 5

Simulated Nuclear-Family Data with Two Trait Loci with Multiplicative Interaction Effects: High- (I1)
and Low-Interaction (I2) Effect Models

Model and
Location
(Fitted) (BF) q (Fitted � SD) b (Fitted � SD) d (Fitted � SD) (Fitted)2h

I1:
16 (17) (7.79) .5 (.38 � .11) 2.19 (2.37 � .46) .5 (.39 � .12) .15 (.31)
Interaction Effects … … 2.24 … .45
39 (37) (2.45) .5 (.38 � .15) 1.79 (1.54 � .68) 1 (.63 � .27) .15 (.17)

I2:
16 (17) (10.19) .5 (.41 � .09) 3.15 (2.80 � .48) .5 (.44 � .11) .30 (.35)
Interaction Effects … … .64 .15
39 (40) (5.30) .5 (.38 � .11) 2.55 (1.96 � .48) 1 (.84 � .17) .30 (.27)

NOTE.—Total heritability is fixed at 0.75 and pedigree size is at . In the parentheses the identified50 # 8
locations with the highest BFs, their BFs, MCMC-fitted estimates of the segregation parameters, and their
corresponding sample SDs are shown.

sons for this, most likely their weaker heritabilities and
the closer distances between them.

Two-Locus Models with Interaction Effects

We studied the robustness of our approach for the
case that our assumption of locus-additivity was mis-
specified. We simulated data including a multiplicative
interaction between two trait loci in the model of the
form

2Y ∼ N[b � b f(G ) � b f(G ) � b f(G )f(G ),j ] ,i 0 1 i1 2 i2 3 i1 i2

where f is defined as in equation (5). Fixing the total
heritability at 75%, we performed two experiments set-
ting the interaction parameter ( ) to provide 45% andb3

15% heritability, respectively (models I1–2 in tables 1
and 5; fig. 9). The additive effects of the two trait loci
(after interaction effects were subtracted) were then di-
vided evenly between the two. Thus, the first model of
strong interaction (I1) had two QTLs, each with heri-
tability 15%, and the second model of weak interaction
(I2) had two, each with heritability 30%. As expected,
in the weak interaction case the true locations, parameter
values, and heritability of the two QTLs were precisely
predicted (fig. 9b1–b2 and the second block in table 5).
In the strong-interaction case, their locations and indi-
vidual displacement parameters (b) were still reasonably
well captured but were much more widely dispersed.

Comparisons with LOKI

We also compared the performance of our algorithm
with that of Heath’s (1997) program LOKI. For this pur-
pose, we ran that program on a subset of the simulated
data sets described below, using 40,000 iterations after a
burn-in period of 10,000 iterations. For both methods,
we computed the autocorrelation function (ACF) of the
kth lag, , and from this we estimated the “variance in-rk

flation factor” (VIF) using the time series method sug-
gested by Geyer (1992):

K

VIF p 1 � r [1 � cos (pk/K)] .� k
kp1

This can be used to compute the effective sample size (ESS)
as , which can be interpreted as the equivalent num-R/VIF
ber of samples if they were independent, where R is the
total length of each MCMC run. Figure 10 shows plots
of the ACF of allele frequency q and the parameter L
from two runs for the one-locus model 1b and a three-
locus model similar to 3c but with (dominant traitd p 1�

alleles) and . For both cases, the autocorrelationsq p 0.3�

die away much faster for our algorithm than for LOKI.
This translates into a much smaller sample size required
to attain the same degree of Monte Carlo error. Table 6
shows VIF, ESS, and computer time required for these
runs by LOKI and our algorithms at the same UNIX
station as for our simulation studies. It is evident that,
although the simpler LOKI algorithm runs about twice
as fast as ours per iteration (348 vs. 171 iterations/minute
for the one-locus model), the VIF for L is 3.5 times higher,
so that the 40,000 LOKI iterations are roughly equivalent
to the 10,000 of ours (ESS for L 775 and 680, respec-
tively). Thus, our algorithm appeared to be at least twice
as efficient as LOKI in terms of MCMC sampling (total
length of run 64.4 vs. 143.4 minutes for the one-locus
model).

In LOKI, there is no constraint that be positive, sob�

the resulting distributions are often multimodal, with the
different modes essentially corresponding to the same
model with the designation of the high-risk allele re-
versed for one or more loci, with q and d redefined cor-
respondingly (S. Heath, personal communication). To
avoid this problem, our approach constrains each of the
bs to be positive. In addition, LOKI estimates the dis-
placements of the aA and AA genotypes from aa sepa-
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Figure 9 BFs and estimates of heritability (#10) across 50 marker positions when there are two trait loci with multiplicative interaction
effects (total heritability 0.75; 25 marker distance between two loci). a, Strong interaction effects (interaction heritability 0.45). b, Weak interaction
effects (interaction heritability 0.15).

rately, whereas our estimates are related via the param-
eters b and d. For these reasons, the two sets of parameter
estimates are not strictly comparable. For a comparison
of parameter estimation, we therefore have reported, in
table 6, the estimates and SDs of L, q, effect of hetero-
zygote ( , deviation from ), effect of second ho-E E12 11

mozygote ( , deviation from ), and derived quan-E E22 11

tities , whose distributions are not subject to the2h�

problem and tend to be unimodal. For the single-QTL
case, LOKI identified the trail locus with a higher her-
itability (0.17; closer to the true ) than our2h p 0.25
approach, but for the three-QTL cases, LOKI failed to
capture the effects of the major trait locus, whereas our
algorithm was able to identify it close to the true sim-
ulated effects. Furthermore, the VIFs for q (or , theq1

allele frequency of the largest trait locus) are substan-
tially smaller from our program than from LOKI.

Notice also that the posterior distributions for L are
somewhat broader. To determine which has the more
appropriate coverage would require many replicate sim-
ulations, which would be beyond our computing re-
sources. Nevertheless, it is evident from the comparisons
of the iteration results for x shown in figure 11 that our
algorithm appears to be mixing better.

Discussion

The reversible-jump MCMC methods for fitting QTL
models with an unknown number of trait loci that have
been developed quite independently for line crosses (Sa-
togopan et al. 1996; Stevens and Fisch 1998; Sillanpää
and Arjas 1998, 1999) and for human nuclear-family and
extended-pedigree data (Heath 1997; Thomas et al. 1997)
are quite similar. The methods for experimental crosses
do not involve many of the complexities of sampling the
unobserved trait genotypes that arise in the human con-
text, but the methods of updating the number of trait loci
and their parameters are essentially the same. In the hu-
man context, the sampling of trait genotypes and the ar-

rangement of markers and trait genotypes into haplotypes
is not so straightforward and requires an additional step.

Our approach differs from that of Heath (1997) in
two essential ways. First, Heath does not distinguish
between trait and marker loci in sampling haplotypes,
and the sampling of parental sources at each locus is
based on their respective full conditional distributions.
In our approach, marker haplotypes are sampled first,
without reference to the trait phenotypes; despite this
potential loss of information, the implementation of this
approach is somewhat simpler and may improve con-
vergence, since the samples of haplotypes are indepen-
dent from one cycle to the next (or almost independent,
if the Metropolis-Hastings step is used). Second, our
proposals for adding, deleting, and moving trait loci
differ. Heath uses two different proposals for adding
loci: either pick a new location completely at random
over the entire genome or split an existing locus, re-
taining the position of the one and sampling a second
position again at random over the entire genome. Our
approach uses only the first type of proposal to add a
locus but bases the choice of location parameter on a
variant of the Haseman-Elston (1972) method to pref-
erentially sample regions where the residuals from the
current model suggest that another trait locus is likely
to exist. This produces acceptance rates that are typi-
cally 18%–20% if the true L is 10 (if the true ,L p 0
the acceptance rate for “add moves” is 32%, and, for
“delete moves” where , the acceptance rate isL p 1
73%). In contrast, the acceptance rates of LOKI’s add/
delete move of a QTL by its reversible-jump algorithm
was 1.3%–1.4%. Instead of split/join moves to change
the position of a trait locus, we allow moves from one
pair of flanking markers to an immediately adjoining
pair, by means of a Metropolis-Hastings step. The ac-
ceptance rates for these moves is typically ∼62%–75%,
and location updates (within positions) generally have
acceptance rates of 91%–94%. These two types of
moves accomplish quite different purposes; an add
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Figure 10 Autocorrelation functions (ACF) of LOKI and Lee-Thomas MCMC samples of q for one-locus model 1b and of the number
of trait loci (L) for the three-locus model in table 6.

move allows new loci to be created far from any existing
locus (but more likely in regions where there is some
evidence of linkage in the residuals), whereas the po-
sition update allows an existing locus to jump over the
boundaries defined by its flanking markers. Given that
a locus already has been placed in a particular location,
we feel that local moves (to adjacent positions or within
an interval) are more likely to be accepted than are
moves to more-distant locations, as are done in LOKI,
as well as being computationally more efficient. We have
not attempted a formal comparison of the separate ef-
fects of these methodological differences on their per-
formance, but when these differences are taken together,
it appears that they substantially improve the overall
mixing of the algorithm.

A reviewer queried whether it would be necessary to
add a constraint on the total variance predicted by the
model. We do not feel this is necessary, since this will
tend to be taken care of automatically in the updates of
the parameters. However, it does suggest that the pro-
posal to add loci might be improved by addition of such
a constraint or by reallocation of either the displacement
parameters for all loci or the residual variance to main-
tain the same total variance. We have not explored
whether this would improve the performance, but the
relatively high acceptance rates of our current proposal
suggests that this is not really needed. A final difference
is that Heath’s program LOKI is applicable to extended

pedigrees, whereas ours has been implemented so far only
for nuclear families. However, ours could be extended to
pedigrees without any fundamental changes in logic by
modifying three parts—marker-haplotype updating, ge-
notype assignment, and the proposal for adding loci.

Similar to the nuclear-family case, the haplotype up-
date could be done locus-by-locus, calculating the prob-
abilities of all possible configurations of the founders’
haplotypes for a pair of loci, conditional on the observed
genotypes for the entire pedigree at these two loci, choos-
ing a new haplotype configuration with these probabil-
ities and then using the Hastings ratio to decide whether
to accept the proposed change at that pair using the entire
pedigree of haplotypes. One could also update one foun-
der’s haplotype at a time by proposing a random change
to the entire haplotype (a swap of a single marker or a
whole segment) and using the Hastings ratio again to
accept or reject that proposal. Additional moves to non-
founders’ segregation indicators are also needed, to allow
for recombination. We have implemented an MCMC
haplotyping algorithm that incorporates such approaches
and appears to work for general pedigrees, including
those with inbreeding loops. However, further research
is needed to compare the mixing performance of these
or other approaches in complex pedigrees, such as that
used in LOKI, as there are well-known difficulties with
MCMC methods in multiallelic systems in complex ped-
igrees (Lin 1993).
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Table 6

Comparison of Performance of LOKI and Lee-Thomas (LT) Methods
in a One-QTL Model (1b) and a Three-QTL Model Similar to 3c:
Computer Time, VIF, ESS, and Parameter Estimates and Their SDs

Summary Statistic and Parameter LOKI LT

Single-QTL model (1b):
No. of iterations (burn-in) 50,000 (10,000) 11,000 (1,000)

Computer time (min) 143.4 64.4
VIF (ESS):

L 51.6 (775) 14.7 (680)
∗q1 27.6 (1,449) 14.4 (694)
∗E12 28.5 (1,404) 8.0 (1,250)
∗E22 37.7 (1,061) 8.5 (1,176)

Estimate (SD):
L p 1 1.21 (.48) 1.67 (.86)

∗q p 0.501 .40 (.17) .39 (.16)
∗E p 0.8212 .58 (.40) .55 (.27)
∗E p 1.6322 1.29 (.39) 1.08 (.37)
2h p 0.251 .17 (.05) .15 (.06)

Three-QTL model:
No. of iterations (burn-in) 50,000 (10,000) 11,000 (1,000)
Computer time (min) 186.1 86.3
VIF (ESS):

L 60.2 (664) 31.8 (314)
∗q1 38.0 (1,053) 9.3 (1,075)
∗E12 27.0 (1,481) 13.3 (752)
∗E22 28.1 (1,423) 11.0 (909)

Estimate (SD):
L p 3 1.18 (.43) 3.27 (.91)

∗q p 0.301 .40 (.21) .36 (.10)
∗E p 3.0212 .47 (.49) 2.75 (.47)
∗E p 3.0222 1.13 (.45) 3.04 (.51)
2h p 0.571 .14 (.06) .64 (.11)

a LOKI’s output , effect of heterozygote, and , effect of “22”E E12 22

homozygote, are essentially equivalent to LT’s and b, respec-b # d

tively. For the comparison between the two methods, we reparame-
trized LOKI’s output as if , otherwise,∗ ∗q p q E 1 0 1 � q E p1 1 22 1 12

, and , since LOKI’s output has multi-∗E � min{0,E } E p FE F12 22 22 22

modality caused by aliasing of the two alleles at each trait locus.

We also investigated the performance of our haplotype
algorithm for larger marker spacings—5, 10, and 20 cM,
on average. For nuclear-family data, our approximation
appeared to be very good. For example, in the 5-cM case,
the BF and estimates of segregation parameters were
closely estimated: BF (6.98, 6.92), (0.41, 0.41),q p 0.5

(2.23, 2.22), and (0.52, 0.52), cor-b p 2.83 d p 0.5
recting and not correcting the Hastings ratio, respectively;
similar results were observed in 10- and 20-cM cases.
Thus, the conditional haplotype update using two flank-
ing markers seems to be fairly close to the full conditional
distribution of the trait loci and marker data in these
nuclear-family data. As expected, when larger spacings
were used, the BFs became slightly smaller—6.98, 6.08,
and 5.47 for 5-, 10-, and 20-cM cases, respec-
tively—reflecting the loss of information from using a
sparser marker map.

The genotype update can be extended using the same
peeling and gene-dropping algorithm of Ploughman and
Boehnke (1989) as in our program and LOKI, but this
would require that pedigrees be peelable. For complex
pedigrees, MCMC methods could be used but might re-
quire many more iterations.

Our proposal for creating new loci, based on a Has-
eman-Elston regression of the squared differences in trait
residuals (adjusted for loci already in the model) on iden-
tical-by-descent (IBD) sharing probabilities, could be ex-
tended to larger pedigrees in a number of ways. The
simplest would be to include all possible sib pairs within
each pedigree, treating them as independent, but one
might also consider including more-distant relative pairs.
Even though these contributions would not be indepen-
dent, it is not necessary for this purpose that the resulting
proposal be the correct likelihood but only that it be able
to suggest areas of relatively higher likelihood for finding
genes. The real likelihoods, based on a peeling calculation
under the new and old models, would then be used to
accept or reject the proposed new locus.

Over a wide range of true model specifications, we
found that our method performed well at identifying the
location of trait loci and at estimating their penetrances
and allele frequencies, provided that their contribution
to heritability was sufficiently large and that they were
not too close together. When the model was misspecified
by ignoring epistasis, the locations and segregation pa-
rameters of the trait loci were still well estimated, espe-
cially when the interaction effects were small. We have
not extended our algorithm to estimation of epistatic
models, but in principle this could be done by adding
terms to the penetrance model; this might be accom-
plished by further reversible-jump operations to add and
delete interaction terms, including higher-order interac-
tions in a hierarchical manner.

The approach was less successful at identifying the true
number of trait loci; in most cases we considered, the
true value of L had the highest BF, but the variation in
BFs was often not very large. Not surprisingly, when the
heritability of one or more true loci was small (either low
allele frequency or low penetrance), the method tended
to underestimate L, and, for the more informative data
sets ( ), the BFs for L were more strongly peaked50 # 8
than for the less informative data sets ( ) for the200 # 2
same heritability. Another situation where the method
tended to break down was when two loci were too close
to each other, where the posterior distribution of loca-
tions tended to coalesce into a single broad peak. Similar
experience was reported by Richardson and Green (1997)
and Lee et al. (1998) in applying reversible-jump MCMC
to the problem of estimating mixture distributions with
an unknown number of components. They found that in
several real data sets, their mixture of normal densities
provided no clear inferences on the number of compo-
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Figure 11 Time series plots of QTL locations of LOKI and Lee-Thomas methods for the simulated data of the three-locus model in table
6. Each of 1,000 iterations (randomly chosen) was shown for visibility.

nents, although the fitted marginal densities (averaging
over the various numbers of components) provided an
excellent fit to the observed density. The former authors
speculate that the reason for this behavior is that the
prior model does not penalize overfitting of many com-
ponents and that a “decision theory” approach with a
cost function or a combination with other criteria of
overfit might be more appropriate.

The BF can be interpreted as a summary of the evidence
provided by the data in favor of a postulated statistical
model against a null model—presence of a QTL against
no QTL at a particular locus in our case. Kass and Raftery
(1995) have suggested guidelines for interpretation of this
statistic: a BF of 1–3 can be considered as “very mild
evidence,” 3–20 as “positive,” 20–150 as “strong,” and
1150 as “very strong.” From our simulation results, most
(25/26) of the simulated trait loci with heritability �25%
were identified by BFs 13, and some (7/11) of the sim-
ulated trait loci with heritability of 15%–25% were also
identified by BFs 13. Therefore, our MCMC approach
identified the trait loci with reasonably high heritability.

The computational demands of the method precluded
a full-scale simulation study with many replicates of each
choice of parameters. Thus, we are unable to address the
type I and II error rates (although we hasten to point out

that the repeated sampling concepts of test size and power
are not really meaningful in the Bayesian context in which
our methods are set). However, the absence of any BFs
11.0 in the case for any of our current and twoL p 0
other simulation conditions (153 possible positions in
total; data not shown) suggest that that type I error rate
is acceptably low. Similarly, the clear signals at or near
most of the true simulated loci (38 true loci out of 41
with heritability 110% produced a BF of �1.0 within
two marker positions of the true location) also suggest
that power is good, provided that the heritability is suf-
ficiently large. More-ambitious simulation studies with
replication would be helpful to better understand the
limits of detection of the method and its robustness to
model misspecification. It is also worth noting the ex-
cellent performance of LOKI in its applications to the
GAW 10 and 11 data sets, in which quite complex models
were simulated and the fitted models were necessarily
somewhat misspecified.
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Appendix A

MCMC Updating Procedures

Haplotype Assignment

The marker phenotypes are randomly reassigned to haplotypes at the beginning of each cycle. This is done se-
quentially on each chromosome, beginning with an arbitrary assignment of the marker alleles at the first locus to
grandparental sources and then conditioning the assignment of subsequent loci on the grandparental sources of the
previous locus. Let us consider two marker loci, each with four different allele types: a, b, c, d for the first locus and
A, B, C, D for the second one. We then distinguish three potentially informative configurations of parental marker
phenotypes at the second locus: (1) both parents heterozygous and sharing, at most, one allele; (2) one parent
heterozygous; (3) parents sharing two alleles with subtypes (a) if the offspring is homozygous and (b) if the offspring
is heterozygous. In each of these situations, the haplotype probabilities depend on the recombination fraction, as
products over all the offspring of , , and . A pair of parental haplotypes is then2 2v/2 (1 � v)/2 V p [v � (1 � v) ]/2
sampled with these probabilities. Grandparental sources are assigned to each of the offspring where they canTijcmp

be inferred directly by matching the alleles; for example, in configuration (1), if the parents were assigned haplotype
aA bB cD dC, then an offspring with genotype ac,AC could only be assigned haplotype aA cC with sources fF fMF # F F F
(where “f” and “m” denote grandpaternal and grandmaternal sources, respectively, for the first locus, and likewise
for the second locus). Similar situations arise in configuration (3a) and for the heterozygous parent in configuration
(2). In the ambiguous situations, the two possible haplotypes are assigned at random with the appropriate probabilities.
For example, in configuration (2), the source for the homozygous parent would be assigned with probability v or

, depending upon the assignment at the first locus. In configuration (3b), if the parents were assigned haplotypes1 � v

aA bB cB dA, then an offspring with genotype ac,AB could be assigned either haplotype aA cB (fF fF) or haplotypeF # F F F
aB cA (fM fM) with probabilities and respectively; on the other hand, if the parents were assigned2 2F F (1 � v) /2V v /2V

aA bB cA dB, the two offspring haplotypes would be assigned with equal probability.F # F
As noted by a reviewer, sampling locus by locus in this fashion does not exactly generate the correct haplotype

distribution, because we do not use the full phenotype data. Specifically, the true distribution, , can be decom-P(TFH)
posed as

[T FH][T FT ,]...[T FT ,...,T ,H] ,1 2 1 L 1 L�1

but what we actually sample from is

Q(TFH) p [T FH ][T FT ,H ,H ]...P[TFT ,H ,H ]...P[T FT ,H ] .1 1 2 1 1 2 � ��1 ��1 � L L�1 L�1

The appropriate fix is to either accept or reject a new haplotyping based on the Hastings ratio, R p
. However, in our simulations, it appears that this ratio is generally so close′ ′min [1,P(T FH)Q(TFH)/P(TFH)Q(T FH)]

to 1, in most cases, that this additional step is not needed.
Note that the trait phenotype is not used in making these marker-haplotype assignments. The resulting Markov

chain thus entails sampling from , which is approximately proportional to if[TFH][GFY,T] [G,TFY,H] [TFH] ≈
(since in our construction). Heath (1997) instead samples from the full conditional[TFH,Y] [GFY,T] p [GFY,T,H]

distributions and . Both samplers thus generate the same marginal distributions but[TFH,G,Y] [GFY,T,H] [G,TFY,H]
may have different time-series performance. Even though the sampling of marker haplotypes by our method may be
less efficient, the samples are independent from one cycle to the next, which we speculate should reduce the auto-
correlation in the series of , which should accelerate convergence and require fewer samples to tabulate[GFY,T,H]
marginal distributions.
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Genotype Assignment

For nuclear families, it is straightforward to compute the joint probability of all possible genotype vectors at a
single locus, conditional on the markers and on the genotypes at all other loci, and make a random draw from that
distribution. First, we compute the peeled probabilities for each of the 16 possible genotypes , byP pG p (G )i� i�s p,spm,f

summing over the 4 possible genotypes that could have been passed to each of the offspring, and select a parental
genotype with the corresponding probability:

P PPr (G FY ,T ; V,Q) p Pr (G Fq )� Tr(g )Tr(g )R(g ,g ) , (A1)�i� i i i� � 1 2 1 2
j (g ,g )1 2

where Tr(g ) p Pr (G p g FT ,T ; x ,X ,X )p ij�p p ijcmp ijcnp � cm cn

and R(g ,g ) p Pr (y FG p (g ,g ); b ,d ,S) ,1 2 ij� ij� 1 2 � �

the three probabilities being given by equations (1), (2), and (4) respectively, with indicating the phenotype residualsy
after the effects of all of the other trait loci are subtracted,

′y p Y � a � g Z � b f(G ) .�ij� ij ij k ijk
k(�

Then, conditional on the parental genotypes, we select a genotype for each offspring with probability given by the
terms inside the summation in equation (A1).

Positions

The position probabilities cannot be computed using the current assignment of genotypes, since recombinants are
only meaningful with respect to their currently flanking markers. Instead, the position probabilities must be computed
by peeling the trait genotypes for each position considered. Since this would be too computationally intensive, we use
instead the Metropolis-Hastings algorithm, based on a proposal to move the present position one marker to the left
or right. If both positions are currently unoccupied, the choice of which direction to propose is made with equal
probability. The acceptance probabilities are then computed using the ratios of (summing over allPr (YFT ,T )cm cn

possible trait genotypes) at the old and new positions, divided by the corresponding ratio of proposal probabilities.
If the new position is accepted, new trait genotypes are assigned by sampling from the peeled probabilities, as described
under Genotype Assignment above. We have also explored proposal probabilities based on the ratio of the numbers
of recombinants with the right and left markers under the current genotype assignment but have not found any
improvement in performance.

Locations

The conditional distribution of , given a particular position , is proportional tox (C ,P )� � �

R N R Ncm� cm� cn� cn�v(x � X ) [1 � v(x � X )] v(x � X ) [1 � v(x � X )] .cm cm cn cn

If the current position is at the end of a chromosome, this reduces to an easily sampled Beta distribution in v. Otherwise,
we use a Metropolis-Hastings step, proposing as the new .x p X � (X � X ) Beta(R ,R )� cm cn cm cm� cn�

Penetrance Parameters

The sufficient statistics for estimating and are the sample means of the residuals for the three possible—b d y y� � g� ij�

genotypes g and the numbers of subjects assigned to each genotype. The log-likelihood is then proportional tong�

— — —2 2 2n (y � bD ) � n [y � b(d � D )] � n [y � b(1 � D )] , (A2)0� 0� � 1� 1� � � 2� 2� �

where is treated as a function of (eq. [5]). Conditional on d, equation (A2) is easily expressed as a normal log-D d� �

likelihood in b, and vice versa. We have found it convenient to use the Metropolis-Hastings algorithm, proposing
new values of b and d from their conditional distributions, truncated at 0 and 1 for d, and then computing the Hastings
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ratio using equation (A2) to decide whether to accept the new parameter values. For b, we allow for the prior in the
proposal step by drawing from a normal distribution , restricted to , where˜ ˆN[b,V(b)] b 1 0

˜ ˆ ˆ�b p b � V(b)/q .

Allele Frequencies

The full conditional distribution for is a Beta( distribution, where is the number of G allelesq N ,4I � N ) N� � � �

among the parents at locus , multiplied by the likelihood function for as a function of . However, since the� Y D(q)
dependence on is relatively weak, the simplest procedure is to use the Metropolis-Hastings method, with aD(q)
proposal based on the Beta distribution part. having been updated, a new value of is computed, followingq D� �

equation (5).

Number of Trait Loci

Following the reversible-jump MCMC approach of Green (1995), we propose to increase L by 1, with probability
, or to decrease it, with probability , where unless or .b d p 1 � b b p 1/2 L p 0 (b p 1) L p L (b p 0)L L L L L max L

To increase L, we create a new trait locus with and drawn from their respective priors, as described above,V QL�1 L�1

and then assign by sampling genotypes (as described earlier) with probabilitiesGi,L�1

′ ′Pr (G FH ; V ) Pr (YFG ,Z ; Q ,G)i,L�1 i L�1 i i iPr (G FY ,G ,H ; V ,Q) p , (A3)i,L�1 i i i L�1 ′ ′� Pr (G FH ; V ) Pr (YFG ,Z ; Q ,G)i,L�1 i L�1 i i i
Gi,L�1

where and similarly for . To decrease L, we simply propose to eliminate an existing trait locus,′ ′G p (G,G ) QL�1

selected with equal probability .1/(L � 1)
With this proposal, the calculation of the Metropolis-Hastings ratio becomes particularly simple. The proposal

probabilities are

′Q p Pr (L r L � 1) p b Pr (x FP) Pr (q ) Pr (b ) Pr (G FY,G,H; V ,Q) ,L L�1 L�1 L�1 L�1 L�1

Q p Pr (L � 1 r L) p d /(L � 1) . (A4)L�1

The ratio of true model probabilities (eq. [6]) is

′ ′ ′P Pr (L � 1Fl) Pr (G FH; V ) Pr (YFG ,Z; Q ,G)L�1 L�1p Pr (x FP) Pr (q ) Pr (b ) .L�1 L�1 L�1P Pr (LFl) Pr (YFG; Z; Q,G)

The Hastings ratio thus reduces to

′P Q d lL�1R p p LR , (A5)′PQ b (L � 1)l

′ ′� Pr (G FH; V ) Pr (YFG ,Z; Q ,G)L�1 L�1
GL�1where LR p

Pr (YFG,Z; Q,G)

is the likelihood ratio comparing the probability under the model with loci, peeling over to′Pr (YFG; Q ) L � 1 GL�1

the corresponding probability under the model with only L loci. An add move is then accepted with probability
min(1,R) and a delete move with probability min(1, ).�1R

The difficulty with this proposal is that the probability of creating a new locus in a linked region is very small. We
have therefore developed an alternative proposal based on standard sib-pair methods (Haseman and Elston 1972).
In this approach, we consider all presently unoccupied positions and compute the likelihood for the regression of the
squared differences between sib pairs in their trait residuals (after removing the effects of all the loci presently in the
model) on the number of alleles they share IBD at the two flanking markers. This likelihood is then multiplied by a
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negative exponential prior for the two regression coefficients (so as to penalize the positions where one or both
regressions have a positive sign). Letting denote the resulting proposal probability, the acceptance probability,Qcm

equation (A5), is modified by multiplying it by , where and dX is the length of the˜P /Q P p (dX )/(X � S dX )cm cm cm cm � �

indicated interval.
It is also possible to refine the deletion proposal—for example, by using the predictive value of each existing locus

or the sib-pair likelihoods for each locus. However, we have found that after these changes are allowedPr (YFG ' G )�

for in the Hastings ratio, the resulting acceptance rates were not improved enough to justify the additional computation
required. Provided that the number of loci in the model is relatively small, each locus will be considered for deletion
often enough, even under simple random sampling. This contrasts with the situation for additions, in which the
probability of creating a new locus in a useful position is very small and, if created in an unlinked region, is unlikely
to remain in existence long enough to move to a linked region.

Global Penetrance Parameters G

Update of the overall means and regression coefficients for the fixed covariates are straightforward, simplya g

entailing sampling from their normal full conditional distributions, which are functions of the sums, sums of squares,
and sums of cross products of the trait residuals, after all other effects are subtracted (means, covariate effects, and
all genetic loci). The residual covariance matrix update also follows standard Gibbs sampling principles. For a univariate
trait, this is an inverse gamma distribution (i.e., dividing the sum of squared residuals by a random x2 with the
corresponding degrees of freedom). For a multivariate trait, an inverse Wishart distribution is used—that is, S p

, where is the Cholesky decomposition of the covariance matrix of residuals, is a random�1 �1 ′ ′(sX s) s s p S p � y y Xij ij ij

Wishart matrix , and is a vector of independent identically distributed unit normal deviates.′X p � x x xij
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